The unequal access to Covid-19 vaccines stems from production shortfalls. Building more flexibility into manufacturing processes can help – here’s how.
The pandemic has seen an unprecedented global effort to accelerate the development of safe and effective vaccines and a rapid expansion of vaccine manufacturing capacity. However, challenges in further scaling up vaccine manufacturing capacity to meet higher-than-expected demand and the resulting inequity in vaccine access have highlighted that our past investments in building vaccine surge capacity were insufficient. It is an issue vaccine companies, governments and multilateral agencies must face squarely in order to improve medium-term access to Covid vaccines as well as to gird humanity better against future pandemics. Recent work has analysed financial instruments to expand manufacturing capacity of approved vaccines. But before making decisions about manufacturing, effective vaccines have to be developed. As the race to find Covid-19 vaccines showed us, at the development phase, it is often unclear which platform (mRNA, viral vector and so on) would have the highest likelihood of success in taming a marauding pathogen. Even for currently approved or authorised Covid-19 vaccines, uncertainties abound over the future trajectory of the pandemic and, by extension, that of vaccine manufacturing. Our best bet, therefore, lies in flexibility. Vaccine developers will have to be ready to modify vaccines to target variants of the virus that causes Covid-19 and produce sufficient doses quickly. If Covid-19 becomes endemic, variant-matched annual booster shots may be required in the years ahead, and sufficient production will hinge on more flexible manufacturing capacity. Similarly, any long-term surge capacity as part of the preparedness against future pathogens needs to be flexible enough to pivot from one vaccine manufacturing platform to another. Such flexibility would also contribute to the sustainability of any new manufacturing sites by enabling them to switch to making routine vaccines in between outbreaks. The tradeoff between cost and flexibility Vaccines are complex biological products that take months or even years to make, from raw materials to packaging. Currently, most large vaccine manufacturing facilities specialise in a single product to achieve economies of scale, but this approach is also highly inflexible: There is no way to quickly switch from making one vaccine to another within the same production plant. While monoclonal antibodies and specialised gene therapy are manufactured using highly flexible manufacturing technology, the facilities are relatively small compared to what is needed for large-scale vaccine production. The pandemic has given fresh impetus to process flexibility. Flexible manufacturing entails modular facilities that allow manufacturers to reconfigure equipment such as single-use bioreactors – the apparatus for growing cells under controlled conditions – to accommodate new products or processes. But flexibility comes at a cost. At large volumes of, say, more than 500 million vaccine doses, flexible manufacturing may not match the economies of scale afforded by dedicated production using large stainless steel or glass vessels/reactors. Indeed, in some instances it may be infeasible due to drastically different operations required for different vaccines. The design of a vaccine manufacturing network with the right degree of flexibility then becomes critically important if we are to maximise global access. Otherwise, low-income countries will continue to get vaccines that are not necessarily the most efficacious against new variants. A “sparse” design Designing an optimally flexible vaccine manufacturing network is a matter of mathematical analysis, which one of us has studied in considerable detail. The goal is to construct a “sparse” network (Design C in the graphic below) that maximises the expected performance metric for a given type of demand uncertainty in lieu of a fully flexible but often infeasible design (Design D).